Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Early Hum Dev ; 193: 106036, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38733833

RESUMO

BACKGROUND: Inter-alpha inhibitor proteins (IAIPs) are structurally related proteins found in the systemic circulation with immunomodulatory anti-inflammatory properties. Reduced levels are found in inflammatory related conditions including sepsis and necrotizing enterocolitis, and in neonatal rodents after exposure to hypoxia ischemia. In the current study, cord blood IAIP levels were measured in neonates with and without exposure to hypoxic-ischemic encephalopathy (HIE). METHODS: This is a prospective cohort study including infants born ≥36 weeks over a one-year period. Term pregnancies were divided into two groups: a "reference control" (uncomplicated term deliveries), and "moderate to severe HIE" (qualifying for therapeutic hypothermia). IAIPs were quantified using a sensitive ELISA on the cord blood samples. RESULTS: The study included 57 newborns: Reference control group (n = 13) and moderate/severe HIE group (n = 44). Measurement of IAIP cord blood concentrations in moderate to severe HIE group [278.2 (138.0, 366.0) µg/ml] revealed significantly lower IAIP concentrations compared with the control group [418.6 (384.5, 445.0) µg/ml] (p = 0.002). CONCLUSIONS: These findings suggest a potential role for IAIPs as indicators of neonates at risk for HIE. IAIP levels could have diagnostic implications in the management of HIE. Future research is required to explore the relationship between HIE and IAIPs as biomarkers for disease severity. CATEGORY OF STUDY: Translational.

2.
Neurotherapeutics ; 21(3): e00341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453562

RESUMO

Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 â€‹mg/kg) or placebo (PL) were given 15 â€‹min, 24 and 48 â€‹h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 â€‹min with (30 â€‹°C) and without (36 â€‹°C) exposure to hypothermia 1.5 â€‹h after HI for 3 â€‹h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P â€‹< â€‹0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P â€‹< â€‹0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P â€‹< â€‹0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P â€‹= â€‹0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P â€‹< â€‹0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.


Assuntos
alfa-Globulinas , Animais Recém-Nascidos , Hipotermia Induzida , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Animais , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Hipotermia Induzida/métodos , Masculino , Ratos , Feminino , alfa-Globulinas/metabolismo , Humanos
3.
J Perinatol ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459372

RESUMO

OBJECTIVE: To examine nutritional intake profiles and growth trajectories of extremely low birth weight (ELBW) infants who develop severe bronchopulmonary dysplasia (BPD). STUDY DESIGN: Case-control study using multiple logistic regression analysis with generalized estimating equations (GEE) to adjust for matching. RESULTS: Cumulative and mean fluid intakes were higher (p = 0.003) and caloric intakes lower (p < 0.0001) through week two in infants who developed severe BPD (n = 120) versus those without severe BPD (n = 104). Mean caloric intake through week 12 was lower in infants who developed severe BPD (102 ± 10.1 vs. 107 ± 8.5 kcal/kg/day, p < 0.0001). In the logistic regression models, lower mean caloric intake through week 12 was associated with increased risk of developing severe BPD. Linear growth reduced the odds of BPD by ~30% for each Z-score point. CONCLUSIONS: Higher fluid and lower total caloric intakes and reductions in linear growth were independently associated with an increased risk of developing severe BPD in ELBW infants.

4.
Exp Neurol ; 370: 114563, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37806514

RESUMO

There is a paucity of information regarding efficacious pharmacological neuroprotective strategies to attenuate or reduce brain injury in neonates. Lipopolysaccharide (LPS) disrupts blood-brain barrier (BBB) function in adult rodents and increases inflammation in adults and neonates. Human blood-derived Inter-alpha Inhibitor Proteins (IAIPs) are neuroprotective, improve neonatal survival after LPS, and attenuate LPS-induced disruption of the BBB in adult male mice. We hypothesized that LPS also disrupts the function of the BBB in neonatal mice and that IAIPs attenuate the LPS-induced BBB disruption in male and female neonatal mice. IAIPs were administered to neonatal mice after LPS and BBB permeability quantified with intravenous 14C-sucrose and 99mTc-albumin. Although repeated high doses (3 mg/kg) of LPS in neonates resulted in high mortality rates and a robust increase in BBB permeability, repeated lower doses (1 mg/kg) of LPS resulted in lower mortality rates and disruption of the BBB in both male and female neonates. IAIP treatment attenuated disruption of the BBB similarly to sucrose and albumin after exposure to low-dose LPS in neonatal mice. Exposure to low-dose LPS elevated IAIP concentrations in blood, but it did not appear to increase the systemic levels of Pre-alpha inhibitor (PaI), one of the family members of the IAIPs that contains heavy chain 3. We conclude that IAIPs attenuate LPS-related disruption of the BBB in both male and female neonatal mice.


Assuntos
Barreira Hematoencefálica , Lipopolissacarídeos , Camundongos , Animais , Masculino , Feminino , Humanos , Barreira Hematoencefálica/metabolismo , Lipopolissacarídeos/toxicidade , Animais Recém-Nascidos , Albuminas/metabolismo , Sacarose/metabolismo
5.
Cell Mol Life Sci ; 80(11): 318, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804439

RESUMO

Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Masculino , Feminino , Animais , Humanos , Ovinos , Modelos Animais de Doenças , Encéfalo , Roedores , Organoides/fisiologia
6.
J Perinatol ; 43(10): 1301-1307, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37185366

RESUMO

OBJECTIVE: Infants with severe bronchopulmonary dysplasia (sBPD) have complex medical courses. We developed the clinician-rated Optimal State Scoring Tool (OSST) that measures factors relevant to clinical improvement of sBPD and investigated preliminary validity using linear growth outcome and OSST scores in sBPD patients. METHODS: Tool development process and pilot findings are provided for 13 patients evaluated longitudinally. OSST scores, length measurements, and steroid dependency values were obtained. Changes in OSST scores and lengths were examined using linear mixed-effect models. RESULTS: OSST scores were significantly correlated with linear growth (95% CI 0.36, 0.57). The steroid-dependent group showed significantly slower rate of linear growth (95% CI 0.74, 1.05) and slower rate of increase in OSST scores (95% CI 0.99, 2.13) compared to the non-steroid-dependent group, with the OSST showing the largest effect size. CONCLUSION: Pilot data reflect promising evidence for OSST construct validity in monitoring clinical outcomes in sBPD patients.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Humanos , Lactente , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/terapia
7.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047713

RESUMO

Microvasculature develops during early brain development. Hypoxia-ischemia (HI) and hypoxia (H) predispose to brain injury in neonates. Inter-alpha inhibitor proteins (IAIPs) attenuate injury to the neonatal brain after exposure to HI. However, the effects of IAIPs on the brain microvasculature after exposure to HI have not been examined in neonates. Postnatal day-7 rats were exposed to sham treatment or right carotid artery ligation and 8% oxygen for 90 min. HI comprises hypoxia (H) and ischemia to the right hemisphere (HI-right) and hypoxia to the whole body, including the left hemisphere (H-left). Human IAIPs (hIAIPs, 30 mg/kg) or placebo were injected immediately, 24 and 48 h after HI/H. The brains were analyzed 72 h after HI/H to determine the effects of hIAIPs on the microvasculature by laminin immunohistochemistry and calculation of (1) the percentage area stained by laminin, (2) cumulative microvessel length, and (3) density of tunneling nanotubes (TNTs), which are sensitive indicators of the earliest phases of neo-vascularization/collateralization. hIAIPs mainly affected the percent of the laminin-stained area after HI/H, cumulative vessel length after H but not HI, and TNT density in females but not males. hIAIPs modify the effects of HI/H on the microvasculature after brain injury in neonatal rats and exhibit sex-related differential effects. Our findings suggest that treatment with hIAIPs after exposure to H and HI in neonatal rats affects the laminin content of the vessel basal lamina and angiogenic responses in a sex-related fashion.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Feminino , Ratos , Animais , Humanos , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/metabolismo , Laminina/metabolismo , Hipóxia/metabolismo , Encéfalo/metabolismo , Isquemia , Microvasos/metabolismo
8.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362257

RESUMO

Hypoxia-ischemia (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. We have previously shown that human plasma-derived inter-alpha inhibitor proteins (hIAIPs) attenuate HI-related brain injury in neonatal rats. The optimal dose of hIAIPs for their neuroprotective effects and improvement in behavioral outcomes remains to be determined. We examined the efficacy of 30, 60, or 90 mg/kg of hIAIPs administered to neonatal rats after exposure to HI for 2 h. Postnatal day 7 (P7) Wistar rats were exposed to either sham-surgery or unilateral HI (right carotid artery ligation, 2 h of 8% O2) brain injury. A placebo, 30, 60, or 90 mg/kg of hIAIPs were injected intraperitoneally at 0, 24 and 48 h after HI (n = 9-10/sex). We carried out the following behavioral analyses: P8 (righting reflex), P9 (negative geotaxis) and P10 (open-field task). Rats were humanely killed on P10 and their brains were stained with cresyl violet. Male extension/contraction responses and female righting reflex times were higher in the HI placebo groups than the sham groups. Female open-field exploration was lower in the HI placebo group than the sham group. hIAIPs attenuated these behavioral deficits. However, the magnitude of the responses did not vary by hIAIP dose. hIAIPs reduced male brain infarct volumes in a manner that correlated with improved behavioral outcomes. Increasing the hIAIP dose from 30 to 90 mg/kg did not further accentuate the hIAIP-related decreases in infarct volumes. We conclude that larger doses of hIAIPs did not provide additional benefits over the 30 mg/kg dose for behavior tasks or reductions in infarct volumes in neonatal rats after exposure to severe HI.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Feminino , Humanos , Recém-Nascido , Masculino , Ratos , Animais Recém-Nascidos , Encéfalo/metabolismo , Infarto Encefálico/metabolismo , Lesões Encefálicas/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Ratos Wistar
9.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456999

RESUMO

Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRß), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Claudina-5/metabolismo , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Ratos
10.
Neurotherapeutics ; 19(2): 528-549, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35290609

RESUMO

Hypoxic-ischemic (HI) brain injury is a major contributor to neurodevelopmental morbidities. Inter-alpha inhibitor proteins (IAIPs) have neuroprotective effects on HI-related brain injury in neonatal rats. However, the effects of treatment with IAIPs on sequential behavioral, MRI, and histopathological abnormalities in the young adult brain after treatment with IAIPs in neonates remain to be determined. The objective of this study was to examine the neuroprotective effects of IAIPs at different neurodevelopmental stages from newborn to young adults after exposure of neonates to HI injury. IAIPs were given as 11-sequential 30-mg/kg doses to postnatal (P) day 7-21 rats after right common carotid artery ligation and exposure to 90 min of 8% oxygen. The resulting brain edema and injury were examined by T2-weighted magnetic resonance imaging (MRI) and cresyl violet staining, respectively. The mean T2 values of the ipsilateral hemisphere from MRI slices 6 to 10 were reduced in IAIP-treated HI males + females on P8, P9, and P10 and females on P8, P9, P10, and P14. IAIP treatment reduced hemispheric volume atrophy by 44.5 ± 29.7% in adult male + female P42 rats and improved general locomotor abilities measured by the righting reflex over time at P7.5, P8, and P9 in males + females and males and muscle strength/endurance measured by wire hang on P16 in males + females and females. IAIPs provided beneficial effects during the learning phase of the Morris water maze with females exhibiting beneficial effects. IAIPs confer neuroprotection from HI-related brain injury in neonates and even in adult rats and beneficial MRI and behavioral benefits in a sex-dependent manner.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Encéfalo , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Isquemia/patologia , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar
11.
Int J Mol Sci ; 22(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34639091

RESUMO

Inter-alpha Inhibitor Proteins (IAIPs) are key immunomodulatory molecules. Endogenous IAIPs are present in human, rodent, and sheep brains, and are variably localized to the cytoplasm and nuclei at multiple developmental stages. We have previously reported that ischemia-reperfusion (I/R) reduces IAIP concentrations in the fetal sheep brain. In this study, we examined the effect of I/R on total, cytoplasmic, and nuclear expression of IAIPs in neurons (NeuN+), microglia (Iba1+), oligodendrocytes (Olig2+) and proliferating cells (Ki67+), and their co-localization with histones and the endoplasmic reticulum in fetal brain cells. At 128 days of gestation, fetal sheep were exposed to Sham (n = 6) or I/R induced by cerebral ischemia for 30 min with reperfusion for 7 days (n = 5). Although I/R did not change the total number of IAIP+ cells in the cerebral cortex or white matter, cells with IAIP+ cytoplasm decreased, whereas cells with IAIP+ nuclei increased in the cortex. I/R reduced total neuronal number but did not change the IAIP+ neuronal number. The proportion of cytoplasmic IAIP+ neurons was reduced, but there was no change in the number of nuclear IAIP+ neurons. I/R increased the number of microglia and decreased the total numbers of IAIP+ microglia and nuclear IAIP+ microglia, but not the number of cytoplasmic IAIP+ microglia. I/R was associated with reduced numbers of oligodendrocytes and increased proliferating cells, without changes in the subcellular IAIP localization. IAIPs co-localized with the endoplasmic reticulum and histones. In conclusion, I/R alters the subcellular localization of IAIPs in cortical neurons and microglia but not in oligodendrocytes or proliferating cells. Taken together with the known neuroprotective effects of exogenous IAIPs, we speculate that endogenous IAIPs may play a role during recovery from I/R.


Assuntos
alfa-Globulinas/metabolismo , Feto/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Feto/patologia , Hipóxia-Isquemia Encefálica/patologia , Masculino , Microglia/patologia , Neurônios/patologia , Fármacos Neuroprotetores , Oligodendroglia/patologia , Ovinos , Frações Subcelulares/metabolismo
12.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34580244

RESUMO

Inter-α inhibitor proteins (IAIPs) are a family of endogenous plasma and extracellular matrix molecules. IAIPs suppress proinflammatory cytokines, limit excess complement activation, and bind extracellular histones to form IAIP-histone complexes, leading to neutralization of histone-associated cytotoxicity in models of sepsis. Many of these detrimental processes also play critical roles in the pathophysiology of ischemic stroke. In this study, we first assessed the clinical relevance of IAIPs in stroke and then tested the therapeutic efficacy of exogenous IAIPs in several experimental stroke models. IAIP levels were reduced in both ischemic stroke patients and in mice subjected to experimental ischemic stroke when compared with controls. Post-stroke administration of IAIP significantly improved stroke outcomes across multiple stroke models, even when given 6 hours after stroke onset. Importantly, the beneficial effects of delayed IAIP treatment were observed in both young and aged mice. Using targeted gene expression analysis, we identified a receptor for complement activation, C5aR1, that was highly suppressed in both the blood and brain of IAIP-treated animals. Subsequent experiments using C5aR1-knockout mice demonstrated that the beneficial effects of IAIPs are mediated in part by C5aR1. These results indicate that IAIP is a potential therapeutic candidate for the treatment of ischemic stroke.


Assuntos
alfa-Globulinas/uso terapêutico , AVC Isquêmico/tratamento farmacológico , alfa-Globulinas/administração & dosagem , alfa-Globulinas/metabolismo , Animais , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Infarto Encefálico/tratamento farmacológico , Infarto Encefálico/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Humanos , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/deficiência , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Ativador de Plasminogênio Tecidual/administração & dosagem
15.
FASEB J ; 35(3): e21399, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559227

RESUMO

The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.


Assuntos
alfa-Globulinas/química , Córtex Cerebral/química , Proteína HMGB1/química , Hipóxia-Isquemia Encefálica/metabolismo , alfa-Globulinas/análise , Animais , Animais Recém-Nascidos , Feminino , Imunofluorescência , Proteína HMGB1/análise , Imuno-Histoquímica , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
16.
Brain Sci ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348631

RESUMO

Hypoxic-Ischemic (HI) brain injury in the neonate contributes to life-long cognitive impairment. Early diagnosis and therapeutic interventions are critical but limited. We previously reported in a rat model of HI two interventional approaches that improve cognitive and sensory function: administration of Inter-alpha Inhibitor Proteins (IAIPs) and early experience in an eight-arm radial water maze (RWM) task. Here, we expanded these studies to examine the combined effects of IAIPs and multiple weeks of RWM assessment beginning with juvenile or adolescent rats to evaluate optimal age windows for behavioral interventions. Subjects were divided into treatment groups; HI with vehicle, sham surgery with vehicle, and HI with IAIPs, and received either juvenile (P31 initiation) or adolescent (P52 initiation) RWM testing, followed by adult retesting. Error rates on the RWM decreased across weeks for all conditions. Whereas, HI injury impaired global performance as compared to shams. IAIP-treated HI subjects tested as juveniles made fewer errors as compared to their untreated HI counterparts. The juvenile group made significantly fewer errors on moderate demand trials and showed improved retention as compared to the adolescent group during the first week of adult retesting. Together, results support and extend our previous findings that combining behavioral and anti-inflammatory interventions in the presence of HI improves subsequent learning performance. Results further indicate sensitive periods for behavioral interventions to improve cognitive outcomes. Specifically, early life cognitive experience can improve long-term learning performance even in the presence of HI injury. Results from this study provide insight into typical brain development and the impact of developmentally targeted therapeutics and task-specific experience on subsequent cognitive processing.

17.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276548

RESUMO

Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and mortality in neonates. Hypoxic-ischemic encephalopathy (HIE) predisposes infants to long-term cognitive deficits that influence their quality of life and place a large burden on society. The only approved treatment to protect the brain after HI is therapeutic hypothermia, which has limited effectiveness, a narrow therapeutic time window, and is not considered safe for treatment of premature infants. Alternative or adjunctive therapies are needed to improve outcomes of full-term and premature infants after exposure to HI. Inter-alpha inhibitor proteins (IAIPs) are immunomodulatory molecules that are proposed to limit the progression of neonatal inflammatory conditions, such as sepsis. Inflammation exacerbates neonatal HIE and suggests that IAIPs could attenuate HI-related brain injury and improve cognitive outcomes associated with HIE. Recent studies have shown that intraperitoneal treatment with IAIPs can decrease neuronal and non-neuronal cell death, attenuate glial responses and leukocyte invasion, and provide long-term behavioral benefits in neonatal rat models of HI-related brain injury. The present review summarizes these findings and outlines the remaining experimental analyses necessary to determine the clinical applicability of this promising neuroprotective treatment for neonatal HI-related brain injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , alfa-Globulinas/química , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Animais , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/etiologia , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Neurônios/metabolismo , Neuroproteção , Relação Estrutura-Atividade
18.
Exp Neurol ; 334: 113442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32896573

RESUMO

Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in premature and full-term infants after perinatal complications. Hypothermia is the only treatment approved for HI encephalopathy in newborns. However, this treatment is only partially protective, cannot be used to treat premature infants, and has limited efficacy to treat severe HI encephalopathy. Inflammation contributes to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins that have neuroprotective properties after exposure to moderate HI in neonatal rats. The objective of the current study was to determine the neuroprotective efficacy of treatment with IAIPs starting immediately after or with a delay of one hour after exposure to severe HI of 120 min duration. One hundred and forty-six 7-day-old rat pups were randomized to sham control, HI and immediate treatment with IAIPs (60 mg/kg) or placebo (PL), and sham, HI and delayed treatment with IAIPs or PL. IAIPs or PL were given at zero, 24, and 48 h after HI or 1, 24 and 48 h after HI. Total brain infarct volume was determined 72 h after exposure to HI. Treatment with IAIPs immediately after HI decreased (P < 0.05) infarct volumes by 58.0% and 44.5% in male and female neonatal rats, respectively. Delayed treatment with IAIPs after HI decreased (P < 0.05) infarct volumes by 23.7% in male, but not in female rats. We conclude that IAIPs exert neuroprotective effects even after exposure to severe HI in neonatal rats and appear to exhibit some sex-related differential effects.


Assuntos
alfa-Globulinas/administração & dosagem , Lesões Encefálicas/prevenção & controle , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Neuroproteção/fisiologia , Índice de Gravidade de Doença , alfa-Globulinas/metabolismo , Animais , Animais Recém-Nascidos , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Feminino , Humanos , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/metabolismo , Masculino , Neuroproteção/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Ratos , Ratos Wistar
19.
J Neuroinflammation ; 17(1): 167, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466771

RESUMO

BACKGROUND: Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. METHODS: Chronically instrumented fetal sheep at 103-104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 µg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113-114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. RESULTS: LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. CONCLUSIONS: Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.


Assuntos
Encéfalo/patologia , Inflamação/patologia , Complicações na Gravidez/patologia , Animais , Vasos Sanguíneos/patologia , Feminino , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Gravidez , Complicações na Gravidez/induzido quimicamente , Ovinos
20.
Curr Pharm Des ; 26(32): 3997-4006, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32316887

RESUMO

BACKGROUND: Hypoxic-ischemic (HI) brain injury is a leading cause of long-term neurodevelopmental morbidities in neonates. Human plasma-derived Inter-Alpha Inhibitor Proteins (hIAIPs) are neuroprotective after HI brain injury in neonatal rats. The light chain (bikunin) of hIAIPs inhibits proteases involved in the coagulation of blood. Newborns exposed to HI can be at risk for significant bleeding in the brain and other organs. OBJECTIVE: The objectives of the present study were to assess the pharmacokinetics (PK) and the duration of bleeding after intraperitoneal (IP) administration of hIAIPs in HI-exposed male and female neonatal rats. METHODS: HI was induced with the Rice-Vannucci method in postnatal (P) day-7 rats. After the right common carotid artery ligation, rats were exposed to 90 min of 8% oxygen. hIAIPs (30 mg/kg, IP) were given immediately after Sham or HI exposure in the PK study and serum was collected 1, 6, 12, 24, or 36 h after the injections. Serum hIAIP concentrations were measured with a competitive ELISA. ADAPT5 software was used to fit the pooled PK data considering first-order absorption and disposition. hIAIPs (60 mg/kg, IP) were given in the bleeding time studies at 0, 24 and 48 h after HI with tail bleeding times measured 72 h after HI. RESULTS: IP administration yielded significant systemic exposure to hIAIPs with PK being affected markedly including primarily faster absorption and reduced elimination as a result of HI and modestly of sex-related differences. hIAIP administration did not affect bleeding times after HI. CONCLUSION: These results will help to inform hIAIP dosing regimen schedules in studies of neuroprotection in neonates exposed to HI.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Encéfalo , Feminino , Hemostasia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA